If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2=128t
We move all terms to the left:
-16t^2-(128t)=0
a = -16; b = -128; c = 0;
Δ = b2-4ac
Δ = -1282-4·(-16)·0
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-128}{2*-16}=\frac{0}{-32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+128}{2*-16}=\frac{256}{-32} =-8 $
| |5x-6|+9=0 | | 4(n-3)-(2-5n)=8n | | -4x-75=25 | | 8(6+x)+2x=108 | | u-2.86=8.7 | | -27+20w=3 | | 4(x+3)=-2(5-x) | | 1/2x-5/6x=10 | | 11+2x=7x+1 | | 4/3w+25=33 | | 6(d+7)=2(d-2)+4d | | f/2-15=-12 | | R=0.2r | | 7p+3=32 | | y+(-1)=5 | | 9+7v=10v-6 | | -13a=51 | | (x-5)=4(x+12) | | h/4+13=16 | | 5y=-13+4y | | 0.2(2x+3)=0.6(x+9) | | 0.56-5.5x=-1.64 | | 4y+3-2y=1+y+8 | | 38v+-10=10 | | 8n+(-2n+3)=12 | | x2-8x-22=6 | | -9x+4x-30=x+12 | | r/2+1=4 | | -41=-18-(3x-4x) | | 4+7x=4(2x+1)-8 | | -15+x=5.5 | | 8+10w=3+9w |